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A method to obtain molecular orbitals specially suited for the variational calculation of the electron-transfer
matrix elementVab is reported. These electron-transfer dedicated molecular orbitals (ET-DMOs) are determined
from the diagrammatic second-order expansion of the transfer integralHaband are associated to a participation
index which allows for a truncation of the molecular orbital basis set and, therefore, for a reduction of the
variational space in a difference-dedicated configuration interaction (DDCI) calculation. The suitability of
these ET-DMOs is first tested with some simple organic models for which a reduction of the second-order
space of 40-60% is possible without significant loss of precision. The calculation of the transfer integral for
a Cu(I)-Cu(II) mixed-valence system is also reported. Using as model a cluster of formula Cu2Cl63-, Hab is
estimated to be 2000 cm-1 from a perturbational-variational calculation. The stability of the ET-DMOs for
this system is found to be excellent allowing for a reduction of the variational space of 76% with a relative
error of only 0.15%.

1. Introduction

The electron-transfer matrix elementVab plays a pivotal role
in the theory of ubiquitous electron-transfer (ET) reactions.1 The
most widely theoretical approach used for these reactions is2

the so called “two-states model” according to whichVab is
conventionally defined as half the splitting between the adiabatic
potential energy surfaces at the crossing seam (Figure 1):

Within the two-states framework,E+ andE- are the solutions
for the secular equation

In this equation,Haa ) 〈ψa|H|ψa〉, Hbb ) 〈ψb|H|ψb〉, Hab )
〈ψa|H|ψb〉, andSab ) 〈ψa|ψb〉, H being the electronic Hamil-
tonian. At the crossing pointHaa) Hbb, and ifSab is small,Vab
almost equals the transfer integral coupling statesψa andψb:
Vab≈ Hab.
In the ab initio determination ofVab, two different strategies

can in principle be employed.1a The first is to compute the
adiabatic energies and to obtainVab making use of eq 1. This
procedure can be easily set up from a multiconfigurational
calculation, for instance, or even approximated by using
Koopmans’ theorem.3 The second possibility, or diabatic
method, involves explicit determination of the matrix elements
of eq 2 which is usually accomplished by exploiting the
properties of symmetry-broken SCF solutions for weakly
coupled systems.1a,4

The central problem in the calculation of the transfer integral
Hab arises from the smallness of the electronic coupling.

TypicallyHab values range between 100 and 1000 cm-1, and if
the coupling is very weakHab becomes≈10 cm-1. Although
electron correlation effects have been proposed to be small, it
seems convenient that in a proper and accurate determination
of Hab correlation corrections should be taken into account.
However, up to the present most of the calculations have been
limited to the Hartree-Fock level. The reason for this limitation
is basically due to the technical requirements which would be
involved in such a calculation. Effectively, in an adiabatic
approach, the calculation ofE+ andE- (from a MRCI expansion
for instance) should ensure that the same degree of electron
correlation is incorporated into the two adiabatic states. On
the other hand, the diabatic procedure would involve the
computation of the Hamiltonian matrix elements on the basis
of the correlated diabatic wave functions.
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Figure 1. Schematic potential energy for an electron-transfer reaction.
Eopt, Ed, andEad refer to the optical transition, diabatic, and adiabatic
activation energies, respectively.
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In a recent paper Sanz and Malrieu5 reported an alternative
method to computeVab at the correlated level in which the
determination of adiabatic energies or diabatic wave functions
was not compulsory. In this procedure, only electron correlation
contributions to the off-diagonal termHab were explicitly
computed. The method, based on the quasi degenerate pertur-
bation theory (QDPT),6 was developed along two directions:
(i) direct determination ofHab through a second-order pertur-
bative development in which only the determinants contributing
to Hab are explicitly considered and (ii) variational calculation
by means of the CI matrix built up from the minimal set of
determinants contributing to the energydifferencebetween the
adiabatic states a and b (difference-dedicated CI, DDCI). The
use of such a variational procedure introduces higher order
effects and improves the reliability of the method since
instabilities due to the smallness of denominators are avoided.
Notice that the list of determinants contributing to the energy
difference (the second-order differential space) is the same as
that contributing to the off-diagonal elementHab.
The usefulness of differential spaces has been shown to be a

powerful tool also in the calculation of small quantities such as
singlet-triplet splitting, electronic transitions, and magnetic
couplings.7 However, although such differential spaces are
noticeably smaller than the spaces involved in a second-order
expansion of states a and b, it turns out that they grow rapidly
for medium- and large-sized systems, and therefore, some kind
of truncation is necessary if a variational answer is desired. The
truncation procedure, either on the molecular orbital basis set
or on the list of determinants, always introduces some degree
of arbitrariness; however, in 1991 Miralles, Caballol, and
Malrieu8 generalized the natural orbital suggestions of Lo¨wdin9

and proposed a method to obtain dedicated molecular orbitals
(DMOs) which would be specially suited for the calculation of
a given observable. Such DMOs are the eigenvectors of a
participation matrix whose eigenvalues represent a participation
index in the determination of a specific observable, allowing
then for a rational truncation. The method was proposed to be
general and applied to the calculation of bond dissociation
energies and singlet-triplet gaps and was later extended to the
computation of exchange coupling constants in polyradical
systems.8,10

In the present work we report on the applicability of this
method for the variational calculation of the electron transfer
integralHab. With this aim, a procedure to obtain electron-
transfer dedicated molecular orbitals (ET-DMOs) is developed
first. The suitability of these ET-DMOs is then tested by
analyzing the stability of the differential spaces arising from
truncation of the ET-DMO basis set according to their participa-
tion index. In this analysis two different kind of compounds
are examined. In the first, some simple organic models
constituted by two ethylene subunits separated by a bridge are
considered. In the second, the calculation of the transfer integral
in a much more realistic system, a Cu(I)-Cu(II) mixed-valence
compound, is performed.

2. Theoretical Method

The procedure to obtain the ET-DMO basis will make use
of the diagrammatic expansion of the second-order correction
to Hab. This methodology has been reported in ref 5, and only
a brief summary is given here. Let us consider a system (A-
L-B)+, where A is a donor center, B is an acceptor center,
and L is a bridge ligand. The Hartree-Fock wave function for
the ground and first excited states at the crossing point can be
written:

where 1, 2, ... indicate inner molecular orbitals, and g and u are
symmetric and antisymmetric linear combination of atomic
orbitals centered on the donor and acceptor units. By an
appropriate rotation or another localization method (Boys
method, for instance) it is possible to define two localized
molecular orbitals, a and b (the active MOs), which can be used
to build up two localized determinants,φa

0 andφb
0, which are

degenerate at the seam.

According to the QDPT,6 these diabatic states can be used to
define a model space,S0, where the effective hamiltonian can
be expressed as a 2× 2 matrix

and since the model wave functions are orthogonal, the off-
diagonal element of this matrix is identified with the electron-
transfer matrix element,Vab.
Hab
eff can thus be obtained from a perturbational develop-

ment, which to the second-order is (Mo¨ller-Plesset partition)

where{φR
0} are all determinants interacting withboth φa

0 and
φb
0. These determinants constitute the second-order differen-
tial space and are generated by single and double excitations
from the zeroth-order determinantsφa

0 andφb
0. Alternatively,

the variational calculation ofHab
eff involves a diagonalization of

the CI matrix restricted to the space [φa
0 + φb

0 + {φR
0}]. As

stated in the introduction, the size reduction of such a space is
the main goal of the present work.
In order to obtain the ET-DMOs, the so-called participation

matrixR has now to be determined. According to Miralles et
al.,8 theR matrix arises from a low perturbation of the density
matrix in which occupied and virtual MOs are treated in two
separated blocks

wherei, j labels run over occupied MOs andp, q over virtual
ones.
The diagrams for the density matrix are then obtained from

the second-order energy diagrams by introducing an interaction
line (‚‚‚X) with the aj

+ai operator on either the hole or particle
propagation lines. For instance, the simplest diagram involved
in eq 6 corresponds to the first-order correction and is given by

The diagram for the participation matrix is then

φ1
0 ) |11h22h...ggju|; φ2

0 ) |11h22h...guuj| (3)

φa
0 ) |11h22h...aajb|; φb

0 ) |11h22h...abbh| (4)

(Haa
eff Hab

eff

Hab
eff Hbb

eff ) (5)

Hab
eff(2) ) 〈φa

0|H|φb0〉 + ∑
R

〈φa
0|H|φR

0〉〈φR
0|H|φb0〉

(ε0 - εR)
(6)

Rij ) 〈ψ|aj+ai|ψ〉; Rpq ) 〈ψ|aq+ap|ψ〉 (7)
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and the contribution to theRij element is:

Following this principle, the different contributions toRij and
Rpq have been systematically determined from the diagrams of
ref 5. The corresponding expressions are reported in the
Supporting Information. Once the occupied and virtual blocks
of the R matrix are known, the ET-DMOs are simply their
eigenvectors, the eigenvalues representing their participation
number.
In summary, the computational steps are
(1) Determination of delocalized MOs from either a Hartree-

Fock SCF or a state-averaged MCSCF calculation and further
localization of the active orbitals a and b.
(2) Molecular integral transformation from the AO basis set

to the MO one.
(3) Determination ofR matrix from the expressions given in

the Supporting Information.
(4) Obtention of ET-DMOs through diagonalization of the

R matrix.
(5) Truncation of the new ET-DMO basis set according to

their participation number and determination of the differential
space.
(6) Molecular integral transformation to the truncated ET-

DMO basis set.
(7) Computation of the CI matrix and further diagonalization.
(8) Determination ofHab following the procedure given in

ref 5. When the system is at the crossing seam,Hab is simply
half the difference between the two lowest roots of the CI matrix.

3. Testing the ET-DMOs

The procedure developed above has been set up to compute
the transfer integralHab between two ethylenes connected
through a bridge: [CH2dCH-L-CHdCH2]+, with L being
CH2, O, and S. These compounds, labeled as1, 2, and3, were

already treated in ref 5, and the computational details concerning
the basis set can be found there.
The first step of the procedure is the obtention of the canonical

MOs. As stressed in our previous work, one of our main
concerns was that such MOs should be “democratic”; i.e., they
would not be right- or left-polarized at the seam. Such MOs
can easily be obtained from a state-averaged MCSCF calculation
or from a closed shell SCF calculation on theneutralspecies.
These MOs, labeled as SAMOs and CSMOs, respectively, were
shown to give variationalHab values close to each other. In
the present work we have also considered both type of orbitals,
and as far as the properties of ET-DMOs are concerned, we
have also found similar behavior; that is why only results using
SAMOs as starting point will be reported.

Once the ET-DMOs have been obtained, the simplest way
to analyze their properties is through a progressive truncation
of the virtual or occupied spaces according to their participation
number,F, and further diagonalization of the differential spaces
which arise.11 The results are reported in Figures 2-4.
Starting the analysis with compound1, it can be seen in

Figure 2 howHab remains almost unchanged upon truncation
of 40% of the virtual ET-DMOs. This corresponds to a
threshold of F ) 0.05 and allows for a reduction of the
differential space of 45% with an error inHab of only 1.8%.
Increasing the threshold toF ) 0.1 reduces the number of
determinants to be diagonalized by 60% with an error of 4.5%.
Truncation of the occupied block is also possible, although as
can be seen, there is a small oscillation in the curve. Freezing
8.5% of the occupied ET-DMOs introduces an error of 0.7%,
but it increases to 2.8% when the orbitals have been frozen in
17%. These preliminary results show the excellent behavior
of the ET-DMOs, suggesting that one can reduce the differential
space to almost 50% without loss of precision.
Results for compounds2 and3 show similar trends to those

of compound1. However, since the electronic coupling is now
stronger, the relative deviations are even smaller. The curves
of Figures 3 and 4 make it evident that a truncation of about
45-60% of the virtual ET-DMOs is possible with errors of only

Figure 2. Stability of Hab against the percentage of the frozen ET-
DMOs for compound1. The reduction in the differential spaces is given
separately for virtual and occupied blocks at the top.

-
〈a|F|i〉〈j|F|b〉

(εj - εb)(εi - εb)
(8)

Figure 3. Stability of Hab against the percentage of the frozen ET-
DMOs for compound2.
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0.6-0.8%. The range of truncation in the occupied block for
a given degree of deviation appears to be somewhat lower, but
it should be noted that it is preferable to truncate the virtual
orbitals since they are by far the most numerous, and therefore,
the reduction of the differential space is larger.
One can wonder now what the benefit of the truncation of

the ET-DMOs is against truncation of the canonical MOs. In
order to clarify this point we have performed a set of calculations
in which the same number of virtual or occupied canonical MOs
have been deleted from the Fock space, according to their
energies (i.e., either the highest virtual or the lowest occupied
MOs). The results for compound3, reported in Figure 5, make
clear that such a truncation leads to an oscillatory behavior
which is clearly undesirable.

4. The Cu(I)-Cu(II) Mixed-Valence System

The Cu(I)-Cu(II) system falls among the most important
mixed-valence compounds in both biochemistry (proteins) and

inorganic chemistry. Recently, Cu(I)-Cu(II) halides have been
shown to form linear chains12 with semiconductive behavior
and characterized as belonging to the Robin and Day class II.13

The conductive properties of this system prompted us to attempt
the calculation of the electron transfer integral between the two
Cu centers using the methodology based on the effective
Hamiltonian. Our main goals are firstly to give an estimate of
Hab at the correlated level and secondly, to test the suitability
of the ET-DMOs for compounds in which transition metals are
involved.
To model the Cu(I)-Cu(II), system we have selected a cluster

of formula Cu2Cl63- which is the same unit used by Sherwood
and Hoffmann14 in their extended Huckel MO band calculations.
Basically it consists of two CuCl2 subunits bridged by two
chloride ligands for which an idealized geometry formally
corresponding to the crossing seam has been adopted.

The metal centers are equivalent withD2d local symmetry, and
the bridge plane is assumed to be perpendicular to the ending
CuCl2 units. All Cu-Cl distances are assumed to be the same
(2.3 Å), and the Cu-Cu distance is fixed to 3.1 Å. The
calculations have been performed underC2V symmetry con-
straint, and the computational details are given in ref 15. Notice
that the full symmetryD2hmay not be employed since after the
localization step, the active orbitals a and b are not longer
symmetric or antisymmetric with respect to the center of
inversion.

Figure 4. Stability of Hab against the percentage of the frozen ET-
DMOs for compound3.

Figure 5. Comparison of the stability ofHab for compound3 against truncation of the canonical MOs or the ET-DMOs. Here the original MOs
are those arising from a closed shell calculation (CSMOs).
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The first problem to solve in dealing with the calculation of
the electronic coupling in this system is the size of the second-
order differential space. Effectively, the number of the deter-
minants in this space amounts to more than 500 000. Since
our present computational capabilities prevent us from perform-
ing such a calculation, the truncation of such a space is in order.
The largest number of determinants arises by far from the two
particles-one hole (2p-1h) excitations which are represented at
the end of the Supporting Information. The contribution of these
determinants is expected to be small since they involve higher
energy excitations, and therefore the CI could be in principle
restricted to the two hole-one particle (2h-1p) subspace as done
in ref 5. In order to check this hypothesis, a perturbational
calculation of the transfer integral was performed using eq 6.
The second-order estimate ofHab is 2400 cm-1. The contribu-
tions to this value arising from the different classes of
determinants are summarized in Table 1. As can be seen, the
contribution of the 2p-1h determinants is only-58 cm-1. This
analysis confirms our assumption, and, even more, it suggests
a computational strategy according to which the full differential
space would be divided into two subspaces denoted as 2h-1p
and 2p-1h (of course, the 2h-1p subspace includes the deter-
minants corresponding to the first-order correction as well as
the zero-order model functionsφa

0 and φb
0). Then, the 2h-1p

subspace contribution would be variationally computed, whereas
the corrections due to the 2p-1h determinants would be estimated
from perturbation

This procedure would lead to the best estimate of the electron-
transfer element provided the perturbation contribution would
be small as in the present case.
For the system at hand, the diagonalization of the 2h-1p space

(47 400 determinants) gives a value forHab
var of 2058 cm-1.

Therefore, according to eq 9, the best estimate for the electron
transfer element isHab ) 2000 cm-1, i.e., 400 cm-1 less than
the perturbational value. There is no experimental values for
this system, but our estimate is of the same order than those
reported for instance by Westmoreland et al.18 for half-met-L
derivatives of hemocyanin. These authors found from spec-
troscopic analysis and using the Hush formalism19 values of
Hab ranging between 790 and 1200 cm-1 depending on the
nature of the bridge.
Let us now analyze the performance of the ET-DMOs for

this system. In principle, all the contributions to theRij elements

could be taken into account; however, since the CI space is
limited to the 2h-1p determinants, it seems more coherent not
to include the 2p-1h diagrams in the calculation of theRmatrix.
The results are reported in Figure 6. The virtual space can be
truncated by 70% (F ) 0.05) with a relative error of only 1%.
This truncation leads to a diagonalization of only 14 439
determinants. Truncation of the occupied ET-DMO space for
the same threshold allows a reduction of the 2h-1p space by
61% with an error of 1.4%. Finally, as shown also in Figure
6, the possibility to truncate both virtual and occupied ET-DMOs
has also been considered. Thus, freezing all ET-DMOs with a
participation index lower than 0.02, disregarding if they belong
to the virtual or occupied blocks,20 allows for a reduction of
the differential space by 76% with an error of 0.15%. ForF )
0.05, the 2h-1p space reduces by 88% with an error of 2.2%.
In these cases only the diagonalization of 11 546 and 5590
determinants, respectively, is necessary.

5. Conclusions

The accurate ab initio calculation of small quantities such as
the electron transfer matrix elementVab requires computational
techniques able to introduce the effects of the electron correla-
tion. With this aim, the use of second-order differential spaces
under the QDPT formalism appears to be a suitable choice since
the largest contributions are thus included. However, even using
these second-order differential spaces, a variational calculation
(DDCI) still involves a high computational effort, and some
kind of truncation is necessary. In this paper we have reported
a computational strategy to obtain electron-transfer dedicated
molecular orbitals (ET-DMOs) which allow us to truncate the
molecular orbital basis set with a noticeable reduction of the
CI matrix. The stability of these ET-DMOs has been tested
with some simple organic models for which a full comparison
is possible. The results have shown that it is possible to reduce
the CI space by 40-60% without loss of precision.
The electron-transfer integral for a Cu(I)-Cu(II) mixed-

valence compound has also been considered. Because of the
size of this system, a complete DDCI calculation has not been
possible, and we have proposed a partition of the differential
space and a perturbational-variational theoretical scheme which
gives rise to an estimate forHabof 2000 cm-1. The stability of
the ET-DMOs for this system has also been found to be
excellent allowing for a dramatic reduction of the CI space
(76%) with an error of only 0.15%. We hope that the use of
such ET-DMOs will permit systematic variational calculations
of the electron-transfer matrix element in more involved systems.

TABLE 1: Zeroth-, First-, and Second-Order
Perturbational Contributions (in cm -1) to Hab for the
Cu(I)-Cu(II) Systema

nature determinants contrib.

reference |aajb|; |abbh| 2337.b

L f Cu |..bih...aab| 0c

L f Cu+ L f L′ |..bihjpj..aab|; |..bihpjh..aab|; |..pihbjh..aab| -85.d

L f L′ + Cuf Cu |..jpj..bab|; |..pjh..bab|
L f L′ |..jpj..aab|; |..pjh..aab| 36.d

Cuf L + L f Cu |..bjh..pab|
Cuf L′ |...pab| 170.d

Cuf L′ + L f L′ |..pih..qab|; |..ipj..qab| -58.e

a The nature of the excitations is done in the first column. L stands
for copper and ligand occupied MOs, L′ for virtual MOs, and Cu for
active a and b orbitals. Indicesi, j run over occupied (hole) MOs, and
p,qover virtual (particle) MOs.b Zeroth-order.c First-order, vanishing
because of the generalized Brillouin’s theorem.d 2h-1p space.e 2p-1h
space.

Hab) Hab
var(2h-1p)+ Hab

per(2p-1h) (9)

Figure 6. Effect of the truncation of the ET-DMO basis set onHab

for the Cu2Cl63- cluster: left; virtual block; middle; occupied block;
right; both virtual and occupied blocks.
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