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Dedicated Molecular Orbitals for the Variational Determination of the Electron-Transfer
Matrix Element. Method and Application to a Cu(l) —Cu(ll) Mixed Valence Compound
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A method to obtain molecular orbitals specially suited for the variational calculation of the electron-transfer
matrix element/,is reported. These electron-transfer dedicated molecular orbitals (ET-DMOSs) are determined
from the diagrammatic second-order expansion of the transfer intdgrahd are associated to a participation
index which allows for a truncation of the molecular orbital basis set and, therefore, for a reduction of the
variational space in a difference-dedicated configuration interaction (DDCI) calculation. The suitability of
these ET-DMOs is first tested with some simple organic models for which a reduction of the second-order

space of 46-60% is possible without significant loss of precision. The calculation of the transfer integral for
a Cu(ly-Cu(ll) mixed-valence system is also reported. Using as model a cluster of formp@e€uHy, is
estimated to be 2000 crhfrom a perturbational-variational calculation. The stability of the ET-DMOs for
this system is found to be excellent allowing for a reduction of the variational space of 76% with a relative

error of only 0.15%.

1. Introduction

The electron-transfer matrix elemew, plays a pivotal role
in the theory of ubiquitous electron-transfer (ET) reactibiibe
most widely theoretical approach used for these reactigns is
the so called “two-states model” according to whigh, is
conventionally defined as half the splitting between the adiabatic
potential energy surfaces at the crossing seam (Figure 1):

2V, =E"—E” 1)

Within the two-states framework" andE™ are the solutions

for the secular equation
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In this equationHaa = WalH|yal] Hop = WplH|yppl) Hap =
@aH |yl and Sy = [@aypl] H being the electronic Hamil-
tonian. At the crossing poitaa= Hpp, and if Sypis small,Vap
almost equals the transfer integral coupling statesnd yp:
Vab & Hab

In the ab initio determination do¥,p, two different strategies
can in principle be employetd. The first is to compute the
adiabatic energies and to obtarfg, making use of eq 1. This
procedure can be easily set up from a multiconfigurational
calculation, for instance, or even approximated by using
Koopmans’ theorerd. The second possibility, or diabatic
method, involves explicit determination of the matrix elements
of eq 2 which is usually accomplished by exploiting the
properties of symmetry-broken SCF solutions for weakly
coupled system&:4

The central problem in the calculation of the transfer integral
Hap arises from the smallness of the electronic coupling.

* Author to whom correspondence should be addressed. E-mail: sanz@

quimix.us.es.
® Abstract published if\dvance ACS Abstract§ebruary 1, 1997.
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Figure 1. Schematic potential energy for an electron-transfer reaction.
Eopy, Eg, and Eqq refer to the optical transition, diabatic, and adiabatic
activation energies, respectively.

Typically Hap values range between 100 and 1000 énand if

the coupling is very weak,, becomesx10 cntl. Although
electron correlation effects have been proposed to be small, it
seems convenient that in a proper and accurate determination
of Hap correlation corrections should be taken into account.
However, up to the present most of the calculations have been
limited to the Hartree-Fock level. The reason for this limitation

is basically due to the technical requirements which would be
involved in such a calculation. Effectively, in an adiabatic
approach, the calculation &* andE~ (from a MRCI expansion

for instance) should ensure that the same degree of electron
correlation is incorporated into the two adiabatic states. On
the other hand, the diabatic procedure would involve the
computation of the Hamiltonian matrix elements on the basis
of the correlated diabatic wave functions.
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In a recent paper Sanz and Malfieeported an alternative = |1122...goul; ¢ =|1122...guy ©)
method to computé/,, at the correlated level in which the
determination of adiabatic energies or diabatic wave functions

was n mpulsory. In this pr: re, only electron correlation . . Co A -
as not compulisory this procedure, only electron correlatio symmetric and antisymmetric linear combination of atomic

contributions to the off-diagonal terniy, were explicitly : :
. orbitals centered on the donor and acceptor units. By an
computed. The method, based on the quasi degenerate pertur. P y

. < P2 appropriate rotation or another localization method (Boys
b.at(';.)n t?zo;y (QDF;T?’W‘;S dﬁ}velopr(]ad along (tjwo ddlrectlotns. method, for instance) it is possible to define two localized
0 direct determination oHap, through a secona-order pertur- ., q1661ar orbitals, a and b (the active MOs), which can be used
bative development in which only the determinants contributing . . . 0 0 .

L . - o ' to build up two localized determinantg, and ¢,, which are
to Hap are explicitly considered and (i) variational calculation

. . S degenerate at the seam.

by means of the CI matrix built up from the minimal set of
determinants contributing to the enerdjjferencebetween the R S S
adiabatic states a and b (difference-dedicated Cl, DDCI). The ¢y = 1122..ad|; ¢, =|1122...ably 4)
use of such a variational procedure introduces higher order _ _ _
effects and improves the reliability of the method since Acc_:ordmg to the QDPP,these diabatic states can be_ used to
instabilities due to the smallness of denominators are avoided.define a model spac&, where the effective hamiltonian can
Notice that the list of determinants contributing to the energy be expressed as ax2 2 matrix
difference (the second-order differential space) is the same as
that contributing to the off-diagonal elemeHy, (H:g H:g)

The usefulness of differential spaces has been shown to be a peff peff
powerful tool also in the calculation of small quantities such as ab = b
singlet-triplet splitting, electronic transitions, and magnetic
couplings’ However, although such differential spaces are
noticeably smaller than the spaces involved in a second-order
expansion of states a and b, it turns out that they grow rapidly
for medium- and large-sized systems, and therefore, some kind
of truncation is necessary if a variational answer is desired. The
truncation _procedure, e_ither on the mc_JIecuIar orbital basis set o 00 o
or on the list of determinants, always introduces some degree @) a0 e 10 (B3| H o i, |H 1]
of arbitrariness; however, in 1991 Miralles, Caballol, and Hap ™ = [@alHI¢plH Z (6)
Malriel generalized the natural orbital suggestions of/Hm® « (€0~ €a)
and proposed a method to obtain dedicated molecular orbitals
(DMOs) which would be specially suited for the calculation of Where{¢_} are all determinants interacting witioth ¢3 and
a given observable. Such DMOs are the eigenvectors of a¢). These determinants constitute the second-order differen-
participation matrix whose eigenvalues represent a participationtial space and are generated by single and double excitations
index in the determination of a specific observable, allowing from the zeroth-order determinant§ and 4. Alternatively,
then for a rational truncation. The method was proposed to be the variational calculation dfig] involves a diagonalization of
general and applied to the calculation of bond dissociation the C| matrix restricted to the Spac¢g[+ ¢g + {¢g}], As
energies and singletriplet gaps and was later extended to the stated in the introduction, the size reduction of such a space is
computation of exchange coupling constants in polyradical the main goal of the present work.
systemg:10 In order to obtain the ET-DMOs, the so-called participation

In the present work we report on the applicability of this matrix R has now to be determined. According to Miralles et
method for the variational calculation of the electron transfer al. the R matrix arises from a low perturbation of the density
integral Hyp. With this aim, a procedure to obtain electron- matrix in which occupied and virtual MOs are treated in two
transfer dedicated molecular orbitals (ET-DMOs) is developed separated blocks
first. The suitability of these ET-DMOs is then tested by
analyzi.ng the stability of the 'differential spaces arjsing .fr.om Ry = @|3j+a|¢g Ry = Blvlaéaplwﬂ (7
truncation of the ET-DMO basis set according to their participa-
tion index. In this analysis two different kind of compounds
are examined. In the first, some simple organic models

constituted by two ethylene subunits separated by a bridge are Thé diagrams for the density matrix are then obtained from

ponsiderﬁd. In the sl_ec_ond, the calculation of thg transf:er integralthe second-order energy diagrams by introducing an interaction
in @ much more realistic system, a Cu{Gu(ll) mixed-valence line (---X) with the zi{rai operator on either the hole or particle

compound, is performed. propagation lines. For instance, the simplest diagram involved
in eq 6 corresponds to the first-order correction and is given by

where 1, 2, ... indicate inner molecular orbitals, and g and u are

(6)

and since the model wave functions are orthogonal, the off-
diagonal element of this matrix is identified with the electron-
transfer matrix elemeni/ap

HE" can thus be obtained from a perturbational develop-
ment, which to the second-order is (Mo—Plesset partition)

wherei, j labels run over occupied MOs amd q over virtual

2. Theoretical Method

The procedure to obtain the ET-DMO basis will make use a
of the diagrammatic expansion of the second-order correction
to Hap  This methodology has been reported in ref 5, and only
a brief summary is given here. Let us consider a system (A
L—B)*, where A is a donor center, B is an acceptor center, ~——-F
and L is a bridge ligand. The Hartre€ock wave function for b
the ground and first excited states at the crossing point can be
written; The diagram for the participation matrix is then
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Figure 2. Stability of Ha, against the percentage of the frozen ET-
DMOs for compound.. The reduction in the differential spaces is given
separately for virtual and occupied blocks at the top.
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and the contribution to th&; element is:

_ @FImIF|bO

(6 — ep)(€ — &)

C)

Following this principle, the different contributions i&) and

Rpq have been systematically determined from the diagrams of
ref 5. The corresponding expressions are reported in the
Supporting Information. Once the occupied and virtual blocks

of the R matrix are known, the ET-DMOs are simply their

eigenvectors, the eigenvalues representing their participation

number.
In summary, the computational steps are
(1) Determination of delocalized MOs from either a Hartree
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Figure 3. Stability of Ha, against the percentage of the frozen ET-
DMOs for compounc?.
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already treated in ref 5, and the computational details concerning
the basis set can be found there.

The first step of the procedure is the obtention of the canonical
MOs. As stressed in our previous work, one of our main
concerns was that such MOs should be “democratic”; i.e., they
would not be right- or left-polarized at the seam. Such MOs
can easily be obtained from a state-averaged MCSCF calculation
or from a closed shell SCF calculation on theutral species.
These MOs, labeled as SAMOs and CSMOs, respectively, were
shown to give variationaHap values close to each other. In
the present work we have also considered both type of orbitals,
and as far as the properties of ET-DMOs are concerned, we
have also found similar behavior; that is why only results using
SAMOs as starting point will be reported.

_ CH, 0

N . 7N
CH,=CH CH = CH, CH,= CH CH =CH,

N

s
CH,=CH CH =CH,

3

Once the ET-DMOs have been obtained, the simplest way

Fock SCF or a state-averaged MCSCF calculation and further, analyze their properties is through a progressive truncation

localization of the active orbitals a and b.

(2) Molecular integral transformation from the AO basis set
to the MO one.

(3) Determination oR matrix from the expressions given in
the Supporting Information.

(4) Obtention of ET-DMOs through diagonalization of the
R matrix.

(5) Truncation of the new ET-DMO basis set according to
their participation number and determination of the differential
space.

(6) Molecular integral transformation to the truncated ET-
DMO basis set.

(7) Computation of the CI matrix and further diagonalization.

(8) Determination ofHy, following the procedure given in
ref 5. When the system is at the crossing sedg,is simply
half the difference between the two lowest roots of the CI matrix.

3. Testing the ET-DMOs

of the virtual or occupied spaces according to their participation
number,p, and further diagonalization of the differential spaces
which arisel! The results are reported in Figures£2

Starting the analysis with compourld it can be seen in
Figure 2 howH,, remains almost unchanged upon truncation
of 40% of the virtual ET-DMOs. This corresponds to a
threshold ofp = 0.05 and allows for a reduction of the
differential space of 45% with an error if,, of only 1.8%.
Increasing the threshold tp = 0.1 reduces the number of
determinants to be diagonalized by 60% with an error of 4.5%.
Truncation of the occupied block is also possible, although as
can be seen, there is a small oscillation in the curve. Freezing
8.5% of the occupied ET-DMOs introduces an error of 0.7%,
but it increases to 2.8% when the orbitals have been frozen in
17%. These preliminary results show the excellent behavior
of the ET-DMOs, suggesting that one can reduce the differential
space to almost 50% without loss of precision.

Results for compound® and3 show similar trends to those

The procedure developed above has been set up to computef compoundl. However, since the electronic coupling is now

the transfer integraHa, between two ethylenes connected
through a bridge: [Ch=CH—L—CH=CH]*, with L being
CHp, O, and S. These compounds, labeled.,& and3, were

stronger, the relative deviations are even smaller. The curves
of Figures 3 and 4 make it evident that a truncation of about
45—-60% of the virtual ET-DMOs is possible with errors of only
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[CH,=CH-S-CH=CH,]" inorganic chemistry. Recently, CuffCu(ll) halides have been
us s shown to form linear chaif3 with semiconductive behavior
27. 34. 41. v . . .
e — — ; 1‘ | RS and characterized as belonging to the Robin and Day cld3s II.
" = @ * ot o The conductive properties of this system prompted us to attempt
) the calculation of the electron transfer integral between the two
Cu centers using the methodology based on the effective
Hamiltonian. Our main goals are firstly to give an estimate of
7 teror Hap at the correlated level and secondly, to test the suitability
0850 | - ;rﬁ‘;qﬂ of the ET-DMOs for compounds in which transition metals are

involved.
/ P To model the Cu(B-Cu(ll), system we have selected a cluster
0| o ] ‘ of formula CyCle*~ which is the same unit used by Sherwood
N 3 and Hoffmanf in their extended Huckel MO band calculations.
[ b Basically it consists of two Cuglsubunits bridged by two

. . X chloride ligands for which an idealized geometry formally
° corresponding to the crossing seam has been adopted.

*—e virtual

9600 = - = occupied p

H,, (m™)
N
.
\

9450
0 20
% Frozen ET-DMOs

Figure 4. Stability of Ha, against the percentage of the frozen ET-

DMOs for compound3. Cl
0.6-0.8%. The range of truncation in the occupied block for Clin,,,, I u nCl
a given degree of deviation appears to be somewhat lower, but "C ue
it should be noted that it is preferable to truncate the virtual =" \CI
orbitals since they are by far the most numerous, and therefore,
the reduction of the differential space is larger. X Cl

One can wonder now what the benefit of the truncation of y/ z

the ET-DMOs is against truncation of the canonical MOs. In
order to clarify this point we have performed a set of calculations
in which the same number of virtual or occupied canonical MOS The metal centers are equivalent widk; local symmetry, and
have been deleted from the Fock space, according to theirthe pridge plane is assumed to be perpendicular to the ending
energies (i.e., either the highest virtual or Fhe .Iowest occupied cycy, units. All Cu—Cl distances are assumed to be the same
MOs). The results for compourg] reported in Figure 5, make (2.3 A), and the CuCu distance is fixed to 3.1 A. The
clear that such a truncation leads to an oscillatory behavior -5|culations have been performed und®, symmetry con-
which is clearly undesirable. straint, and the computational details are given in ref 15. Notice
. that the full symmetryD,, may not be employed since after the
4. The Cu(l)—Cu(ll) Mixed-Valence System localization step, the active orbitals a and b are not longer
The Cu(l)-Cu(ll) system falls among the most important symmetric or antisymmetric with respect to the center of
mixed-valence compounds in both biochemistry (proteins) and inversion.

[CH,=CH-S-CH=CH,]"
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Figure 5. Comparison of the stability dfl., for compound3 against truncation of the canonical MOs or the ET-DMOs. Here the original MOs
are those arising from a closed shell calculation (CSMOs).
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TABLE 1: Zeroth-, First-, and Second-Order [Cucl]®

Perturbational Contributions (in cm ~1) to Hy, for the

Cu(l) —Cu(ll) System? vitual occupied occupied & virtual
nature determinants contrib. |

reference |azb|; |abh 23370 o “ T ;/ '

L—Cu |b_|a§1 oc | “;‘“‘

LCutLoU | bip,al b Lol 650 & /

L—L'+Cu=Cu | jp.bab; |..pj.bah g /

L—L |..ip..aab; |..pj..aab 36¢ T a0l [ /1 |

Cu—L+L—Cu | pj.pab // / l

Cu—L' |___p§1_ _ 1704 ol — = — S

Cu=L'+L—L" | pigabj;|.ip.gab —58°

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
aThe nature of the excitations is done in the first column. L stands 7 Frozen ET-DMOs

for copper and ligand occupied MOs, for virtual MOs, and Cu for Figure 6. Effect of the truncation of the ET-DMO basis set bla,
active a and b orbitals. Indicésj run over occupied (hole) MOs, and  for the CuCle*~ cluster: left; virtual block; middle; occupied block;
p,qover virtual (particle) MOsP Zeroth-order¢ First-order, vanishing ~ right; both virtual and occupied blocks.

because of the generalized Brillouin’s theoreétih-1p spaces 2p-1h

space. could be taken into account; however, since the Cl space is
limited to the 2h-1p determinants, it seems more coherent not
to include the 2p-1h diagrams in the calculation of Rhmatrix.

The results are reported in Figure 6. The virtual space can be
truncated by 70%gd = 0.05) with a relative error of only 1%.
This truncation leads to a diagonalization of only 14 439
determinants. Truncation of the occupied ET-DMO space for
the same threshold allows a reduction of the 2h-1p space by
61% with an error of 1.4%. Finally, as shown also in Figure
6, the possibility to truncate both virtual and occupied ET-DMOs
has also been considered. Thus, freezing all ET-DMOs with a

The first problem to solve in dealing with the calculation of
the electronic coupling in this system is the size of the second-
order differential space. Effectively, the number of the deter-
minants in this space amounts to more than 500 000. Since
our present computational capabilities prevent us from perform-
ing such a calculation, the truncation of such a space is in order.
The largest number of determinants arises by far from the two
particles-one hole (2p-1h) excitations which are represented at
the end of the Supporting Information. The contribution of these

determinants is expected to be small since they involve hlgherparticipation index lower than 0.02, disregarding if they belong

energy excitations, and therefore the CI could be in principle o the virtual ed bloct® all ¢ ducti f
restricted to the two hole-one particle (2h-1p) subspace as doneﬁ d(_effVlr ua lor occurt))|e76(yoc : Ha ows orfaorE;c lon o
in ref 5. In order to check this hypothesis, a perturbational the difterential space by 6 with an error of 0.15%. por

: ; : 0.05, the 2h-1p space reduces by 88% with an error of 2.2%.
calculation of the transfer integral was performed using eq 6. . o
The second-order estimateldf, is 2400 cmit. The contribu- " these cases only the diagonalization of 11 546 and 5590

tions to this value arising from the different classes of determinants, respectively, is necessary.
determinants are summarized in Table 1. As can be seen, the

contribution of the 2p-1h determinants is ortp8 cnTl. This 5. Conclusions

analysis confirms our assumption, and, even more, it suggests _— . .
a computational strategy according to which the full differential 1 h€ accurate ab initio calculation of small quantities such as
space would be divided into two subspaces denoted as 2h-1pthe electron transfer matrix elemewn, requires computational

and 2p-1h (of course, the 2h-1p subspace includes the detertechniques able to introduce the effects of the electron correla-

minants corresponding to the first-order correction as well as tion. With this aim, the use of second-order differential spaces
the zero-order model functionﬁg and ¢8)- Then, the 2h-1p under the QDPT formalism appears to be a suitable choice since

subspace contribution would be variationally computed, whereasthe largest contributions are thus included. However, even using

the corrections due to the 2p-1h determinants would be estimateothese second-order differential spaces, a variational calculation
from perturbation (DDCI) still involves a high computational effort, and some

kind of truncation is necessary. In this paper we have reported
H,, = H'(2h-1p)+ H2S(2p-1h) 9) a computatlonal strategy to obtam electron-transfer dedicated
molecular orbitals (ET-DMOs) which allow us to truncate the

transfer element provided the perturbation contribution would C! matrix. The stability of these ET-DMOs has been tested

be small as in the present case. with some simple organic models for which a full comparison
For the system at hand, the diagonalization of the 2h-1p spaceiS Possible. The results have shown that it is possible to reduce
(47 400 determinants) gives a value fidty of 2058 cnt. the CI space by 4060% without loss of precision.

Therefore, according to eq 9, the best estimate for the electron The electron-transfer integral for a CuiCu(ll) mixed-
transfer element ilqp = 2000 cnT1l, i.e., 400 cmt less than valence compound has also been considered. Because of the
the perturbational value. There is no experimental values for size of this system, a complete DDCI calculation has not been
this system, but our estimate is of the same order than thosepossible, and we have proposed a partition of the differential
reported for instance by Westmoreland et®dor half-met-L space and a perturbational-variational theoretical scheme which
derivatives of hemocyanin. These authors found from spec- gives rise to an estimate féty, of 2000 cnTl. The stability of
troscopic analysis and using the Hush formafi¥walues of the ET-DMOs for this system has also been found to be
Hap ranging between 790 and 1200 cthdepending on the  excellent allowing for a dramatic reduction of the Cl space
nature of the bridge. (76%) with an error of only 0.15%. We hope that the use of
Let us now analyze the performance of the ET-DMOs for such ET-DMOs will permit systematic variational calculations
this system. In principle, all the contributions to fReelements of the electron-transfer matrix element in more involved systems.
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